首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Biomechanical properties of canine vertebral and internal carotid arteries
Authors:V Bérczi  P Tóth  A G Kovách  E Monos
Institution:Experimental Research Department, Semmelweis University Medical School, Budapest, Hungary.
Abstract:In order to understand the participation of the geometrical and elastic properties of the large cerebral arteries in the maintenance of brain circulatory homeostasis, biomechanical properties of isolated internal carotid artery (extracranial part) and vertebral artery (intrathoracic part) were investigated both in a relaxed and in an activated (3x 10(-6) mol.l-1 norepinephrine) state of the smooth muscle. Quasi-static large deformation mechanical test was carried out by means of changing the intraluminal pressure slowly (2.5 mmHg.sec-1) and cyclicly in a range of 0-250 mmHg at in vivo length while external diameter was recorded continuously as a function of the intraluminal pressure. Maximum active tangential strain was found to be -2.7 +/- 1.6% at 70 mmHg for the internal carotid artery, and -5.9 +/- 1.1% at 100 mmHg for the vertebral artery. Incremental elastic modulus decreased and distensibility increased in both arteries following smooth muscle activation, these alterations, however, were larger in the case of the vertebral artery. A U-shaped characteristic impedance of vertebral artery was found both in relaxed and in constricted states of this vessel. Minimum values for the relaxed and the activated segments were found at 90 mmHg and 120 mmHg, respectively. These results support the hypothesis that certain biomechanical properties of the large arteries, like impedance, can be regarded as controlled variables that may contribute to the optimization of circulatory functions.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号