首页 | 本学科首页   官方微博 | 高级检索  
     


Development of working memory brain organization in young schoolchildren
Authors:Farber D A  Beteleva T G
Abstract:In children of 7-8 and 9-10 years old, the ERP components were studied by comparing two non-verbalized visuo-spatial stimuli shown in succession with 1.5-1.8 s interstimulus interval. We found the age-related differences in the specific way (and the extent to which) the cortical areas were involved into the processes of the reference stimulus (the first stimulus in the pair) encoding and into the process of comparing the memory trace against the test stimulus. In both age groups, the sensory-specific N1 ERP component in the visual cortices had larger amplitude during working memory than during free observation. Age-related differences in the processing of the sensory-specific parameters of a stimulus are most pronounced in ERP to the test stimulus: in children of 9-10, the amplitude of N1 component increased significantly in all caudal leads following the earlier increase in P1 component in the inferior temporal and occipital areas. In the children of that age, unlike children of 7-8, the early involvement of ventro-lateral prefrontal cortex becomes apparent. In that area an increase of positivity confined to 100-200 ms post-stimulus is observed. Substantial inter-group differences are observed in the late ERP components that are related to cognitive operations. In children of 7-8, presenting both reference and test stimuli causes a significant increase in the amplitude of late positive complex (LPC) in caudal leads with maximal increase being observed in parietal areas at 300-800 ms post-stimulus. In children of 9-10, one can see some adult-like features of the late ERP components during different stages of the working memory process: in fronto-central areas N400 component increases in response to the reference stimulus, whereas LPC increases in response to the test stimulus. The data reported in this work show that the almost mature functional organization of working memory is already in place at the age of 9-10. However, the extent of the prefrontal cortex (especially its dorsal areas) involvement does not yet match the level of maturity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号