Liquid-liquid immiscibility in model membranes activates secretory phospholipase A2 |
| |
Authors: | Wagner Kerstin Desbat Bernard Brezesinski Gerald |
| |
Affiliation: | Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany. wagner@mpikg.mpg.de |
| |
Abstract: | Secretory phospholipase A2 (sPLA2) hydrolyzes phosphatidylcholines (PC) within lipid bilayers to produce lyso-PC and a fatty acid, which can act as signaling molecule in biological membranes. The activity of sPLA2 depends on the membrane structure. Bilayer defects, curvature, and gel-fluid micro-heterogeneity are known to activate sPLA2. Here, we investigate if liquid-liquid immiscibility within model membranes is sufficient for sPLA2 activation. The onset of the hydrolytic activity of cobra-venom sPLA2 towards mixed monolayers of dimyristoyl-PC (DMPC)/cholesterol 2:1 (mol/mol) has been determined using infrared reflection-absorption spectroscopy (IRRAS) and polarization-modulated (PM-) IRRAS. The lag phase of sPLA2 activity increases exponentially with rising surface pressures starting at 12 mN/m. This indicates that enzyme activation is hampered at higher surface pressures. Below 12 mN/m, no lag phase is observed, and sPLA2 is efficiently activated. The surface pressure that is critical for sPLA2 activation correlates with the critical miscibility pressure according to the phase diagram of DMPC and cholesterol. Thus, coexisting, liquid-phase domains provide sufficient boundaries to activate sPLA2. Moreover, liquid-liquid immiscibility is an activating mechanism for sPLA2 that also applies to biological membranes under physiological conditions because the corresponding bilayer structure is associated with that of membrane rafts. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|