首页 | 本学科首页   官方微博 | 高级检索  
     


Non-exponential tolerance to infection in epidemic systems--modeling, inference, and assessment
Authors:Streftaris George  Gibson Gavin J
Affiliation:School of Mathematical and Computer Sciences, Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, UK.
Abstract:The transmission dynamics of infectious diseases have been traditionally described through a time-inhomogeneous Poisson process, thus assuming exponentially distributed levels of disease tolerance following the Sellke construction. Here we focus on a generalization using Weibull individual tolerance thresholds under the susceptible-exposed-infectious-removed class of models which is widely employed in epidemics. Applications with experimental foot-and-mouth disease and historical smallpox data are discussed, and simulation results are presented. Inference is carried out using Markov chain Monte Carlo methods following a Bayesian approach. Model evaluation is performed, where the adequacy of the models is assessed using methodology based on the properties of Bayesian latent residuals, and comparison between 2 candidate models is also considered using a latent likelihood ratio-type test that avoids problems encountered with relevant methods based on Bayes factors.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号