首页 | 本学科首页   官方微博 | 高级检索  
     


Modulation of CYP3A4 expression by ceramide in human colon carcinoma HT-29 cells
Authors:Chun Young-Jin  Lee Sunghee  Yang Soon Ae  Park Sungsik  Kim Mie Young
Affiliation:College of Pharmacy, Chung-Ang University, 221 Huksuk-dong, Dongjak-gu, Seoul, Republic of Korea. yjchun@cau.ac.kr
Abstract:Cytochrome P450 3A4 (CYP3A4) enzyme is responsible for the metabolic activation and inactivation of the majority of clinically used drugs in human liver and intestines. Recent studies have increasingly implicated various inflammatory stimuli to cause changes in the activities and expression levels of CYPs. However, the underlying mechanisms are largely unknown. In the present study, our studies investigated the effects of ceramide on CYP3A4 expression in human colon carcinoma HT-29 cells. Treatment with the cell-permeable ceramide analog C(6)-ceramide to the cells significantly decreased the expression of CYP3A4. By contrast, C(6)-dihydroceramide, a biologically inactive analog of C(6)-ceramide, did not affect CYP3A4 expression. We found that bacterial sphingomyelinase (SMase) and tumor necrosis factor-alpha (TNF), which are known to increase intracellular ceramide levels, also markedly suppressed the synthesis of CYP3A4. To elucidate whether nitric oxide (NO) participates in suppression of CYP3A4 expression by ceramide, the effects of NO modulators were determined. Treatment with N(G)-monomethyl-L-arginine, a competitive inhibitor of inducible nitric oxide synthase (iNOS), was able to protect ceramide-dependent CYP3A4 suppression. In contrast, the addition of S-nitroso-N-acetylpenicillamine, a NO donor, to HT-29 cells reduced CYP3A4 expression. The addition of iNOS antisense oligonucleotide prevented ceramide-mediated induction of iNOS expression and restored CYP3A4 expression. Wortmannin which is known to inhibit phosphatidylinositol 3-kinase (PI3-K) blocked CYP3A4 suppression by ceramide. Taken together, our results demonstrate that ceramide-mediated suppression of CYP3A4 is due to production of NO, which might result from activation of PI3-K.
Keywords:CYP3A4   Ceramide   Nitric oxide   Inducible nitric oxide synthase   Phosphatidylinositol 3-kinase
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号