首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Xenobiotica-metabolizing enzymes in Drosophila melanogaster: activities of epoxide hydratase and glutathione S-transferase compared with similar activities in rat liver.
Authors:A J Baars  M Jansen  D D Breimer
Institution:Department of Pharmacology of the University, Subfaculty of Pharmacy, Sylvius Laboratories, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands
Abstract:Activities of epoxide hydratase and glutathione (GSH) S-transferase were investigated in subcellular fractions of Drosophila melanogaster, and these activities were compared with analogous enzymic activities in extracts from rat liver. Microsomes of Drosophila were active in the hydratation of styrene oxide catalyzed by epoxide hydratase. The post-microsomal supernatant of Drosophila catalyzed the conjugation of GSH with 1-chloro-2,4-dinitrobenzene. However, GSH S-transferase activity with styrene oxide as the electrophilic substrate was not measurable. The respective specific activities of epoxide hydratase (per mg microsomal protein) and GSH S-transferase (per mg cytosolic protein) were factors of 5- and 10-fold lower than the corresponding activities in rat liver. However, when expressed per gram body weight, activities of both epoxide hydratase and GSH S-transferase were 3 times higher for Drosophila enzymes. The apparent Km values for the two Drosophila enzymes were higher, whereas the apparent Km values were lower, than the values found for the rat-liver enzymes. Among 3 different Drosophila strains (a wild-type, a white eye-color carrying mutant strain and a DDT-resistant strain), preliminary experiments showed no differences as far as these two enzymic activities were concerned. It is concluded that the results obtained in genetic toxicology testing with Drosophila are probably relevant to effects to be expected in mammalian systems with compounds requiring metabolic processes involving the enzymes investigated here.
Keywords:CDNB  1-chloro-2  4-dinitrobenzene  DDT  GSH  glutathione (reduced)  STOX  styrene oxide
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号