首页 | 本学科首页   官方微博 | 高级检索  
     


Figure tracking by flies is supported by parallel visual streams
Authors:Aptekar Jacob W  Shoemaker Patrick A  Frye Mark A
Affiliation:Howard Hughes Medical Institute, Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
Abstract:Visual figures may be distinguished based on elementary motion or higher-order non-Fourier features, and flies track both. The canonical elementary motion detector, a compact computation for Fourier motion direction and amplitude, can also encode higher-order signals provided elaborate preprocessing. However, the way in which a fly tracks a moving figure containing both elementary and higher-order signals has not been investigated. Using a novel white noise approach, we demonstrate that (1) the composite response to an object containing both elementary motion (EM) and uncorrelated higher-order figure motion (FM) reflects the linear superposition of each component; (2) the EM-driven component is velocity-dependent, whereas the FM component is driven by retinal position; (3) retinotopic variation in EM and FM responses are different from one another; (4) the FM subsystem superimposes saccadic turns upon smooth pursuit; and (5) the two systems in combination are necessary and sufficient to predict the full range of figure tracking behaviors, including those that generate no EM cues at all. This analysis requires an extension of the model that fly motion vision is based on simple elementary motion detectors and provides a novel method to characterize the subsystems responsible for the pursuit of visual figures.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号