首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The presence of arachnoiditis affects the characteristics of CSF flow in the spinal subarachnoid space: a modelling study
Authors:Cheng Shaokoon  Stoodley Marcus A  Wong Johnny  Hemley Sarah  Fletcher David F  Bilston Lynne E
Institution:Neuroscience Research Australia, University of New South Wales, Sydney, Australia. s.cheng@neura.edu.au
Abstract:Syringomyelia is a neurological disorder characterised by high pressure fluid-filled cysts within the spinal cord. As syringomyelia is associated with abnormalities of the central nervous system that obstruct cerebrospinal fluid (CSF) flow, it is thought that changes in CSF dynamics play an important role in its pathogenesis. Using three-dimensional computational models of the spinal subarachnoid space (SAS), this study aims to determine SAS obstructions, such as arachnoiditis, change in CSF dynamics in the SAS. The geometry of the SAS was reconstructed from a series of MRI images. CSF is modelled as an incompressible Newtonian fluid with a dynamic viscosity of 1 mPa s. Three computational models simulated CSF flow in either the unobstructed SAS, or with the SAS obstructed by a porous region simulating dorsal or circumferential arachnoiditis. The permeability of this porous obstruction was varied for the model with dorsal arachnoiditis. The results show that arachnoiditis increases flow resistance in the SAS and this is accompanied by a modest increase in magnitude and/or shift in timing (with respect to the cardiac cycle) of the CSF pressure drop across the region of arachnoiditis. This study suggests that syrinx formation may be related to a change in temporal CSF pulse pressure dynamics.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号