首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Plants control the properties and actuation of their organs through the orientation of cellulose fibrils in their cell walls
Authors:Burgert Ingo  Fratzl Peter
Institution:Department of Biomaterials, Max-Planck-Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany.
Abstract:Plants use the orientation of cellulose microfibrils to create cell walls with anisotropic properties related to specific functions. This enables organisms to control the shape and size of cells during growth, to adjust the mechanical performance of tissues, and to perform bending movements of organs. We review the key function of cellulose orientation in defining structural-functional relationships in cell walls from a biomechanics perspective, and illustrate this by examples mainly from our own work. First, primary cell-wall expansion largely depends on the organization of cellulose microfibrils in newly deposited tissue and model calculations allow an estimate of how their passive re-orientation may influence the growth of cells. Moreover, mechanical properties of secondary cell walls depend to a large extent on the orientation of cellulose fibrils and we discuss strategies whereby plants utilize this interrelationship for adaptation. Lastly, we address the question of how plants regulate complex organ movements by designing appropriate supramolecular architectures at the level of the cell wall. Several examples, from trees to grasses, show that the cellulose architecture in the cell wall may be used to direct the swelling or shrinking of cell walls and thereby generate internal growth stress or movement of organs.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号