Intracellular free zinc and zinc buffering in human red blood cells |
| |
Authors: | T. J. B. Simons |
| |
Affiliation: | (1) The MRC Secretory Control Research Group, The Physiological Laboratory, University of Liverpool, L69 3BX Liverpool, England |
| |
Abstract: | Summary The effect of vasopressin on voltage-sensitive Ca2+ currents in the rat insulinoma cell line RINm5F has been investigated in patch-clamp whole-cell and single-channel current recording experiments. In the whole-cell recording configuration the dominant inward current in the presence of tetrodotoxin was noninactivating and had a high voltage threshold. This current was much enhanced when external Ca2+ was replaced by Ba2+ and was blocked by 1 m nifedipine. It can therefore be classified as an L-current. Vasopressin enhanced the L-current without changing the voltage threshold of activation or the voltage at which the peak current was observed. Vasopressin effects were seen at concentrations as low as 0.01nm, and the maximal effect was observed at about 1nm. In higher concentrations the vasopressin effects were weaker, with effects at 50nm of about the same magnitude as at 0.01nm. In single-channel current recording experiments carried out with the cell-attached configuration there were no effects on single L-channel currents when vasopressin was added to the bath solution, but in experiments in which vasopressin (5nm) was infused into the patch pipette a marked increase in the apparent channel open state probability was observed. We conclude that vasopressin, a peptide that is known to markedly enhance glucose-evoked insulin secretion, stimulates opening of the voltage-sensitive Ca2+ channels in insulin-secreting cells. |
| |
Keywords: | Ca2+ channels vasopressin single-channel currents whole-cell current insulin secreting cell |
本文献已被 SpringerLink 等数据库收录! |
|