首页 | 本学科首页   官方微博 | 高级检索  
     


Diel Interactions of Oxygenic Photosynthesis and N2 Fixation (Acetylene Reduction) in a Marine Microbial Mat Community
Authors:Brad M. Bebout   Hans W. Paerl   Kenneth M. Crocker     Leslie E. Prufert
Abstract:Diel variations in N2 fixation (acetylene reduction), CO2 fixation, and oxygen concentrations were measured, on three separate occasions, in a marine microbial mat located on Shackleford Banks, North Carolina. Nitrogenase activity (NA) was found to be inversely correlated with CO2 fixation and, in two of the three diel periods studied, was higher at night than during the day. Oxygen concentrations within the top 3 mm of the mat ranged from 0 to 400 μM on a diel cycle; anaerobic conditions generally persisted below 4 mm. NA in the mat was profoundly affected by naturally occurring oxygen concentrations. Experimentally elevated oxygen concentrations resulted in a significant depression of NA, whereas the addition of the Photosystem II inhibitor 3(3,4-dichlorophenyl)-1,1-dimethylurea decreased oxygen concentrations within the mat and resulted in a significant short-term enhancement of NA. Mat N2-fixing microorganisms include cyanobacteria and heterotrophic, photoautotrophic, and chemolithotrophic eubacteria. Measured (whole-mat) NA is probably due to a combination of the NA of each of these groups of organisms. The relative contributions of each group to whole-mat NA probably varied during diel and seasonal (successional) cycles. Reduced compounds derived from photosynthetic CO2 fixation appeared to be an important source of energy for NA during the day, whereas heterotrophic or chemolithotrophic utilization of reduced compounds appeared to be an important source of energy for NA at night, under reduced ambient oxygen concentrations. Previous estimates of N2 fixation calculated on the basis of daytime measurements may have seriously underestimated diel and seasonal nitrogen inputs in mat systems.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号