首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Role of buried polar residues in helix bundle stability and lipid binding of apolipophorin III: destabilization by threonine 31
Authors:Weers Paul M M  Abdullahi Wazir E  Cabrera Jamie M  Hsu Tzu-Chi
Institution:Department of Chemistry and Biochemistry, California State University at Long Beach, Long Beach, California 90840, USA. pweers@csulb.edu
Abstract:Apolipophorin III (apoLp-III) from Locusta migratoria is a model exchangeable apolipoprotein that plays a key role in neutral lipid transport. The protein is comprised of a bundle of five amphipathic alpha-helices, with most hydrophobic residues buried in the protein interior. The low stability of apoLp-III is thought to be crucial for lipid-induced helix bundle opening, to allow protein-lipid interactions. The presence of polar residues in the hydrophobic protein interior may facilitate this role. To test this, two buried polar residues, Thr-31 and Thr-144, were changed into alanine by site-directed mutagenesis. Secondary structure analysis and GdnHCl- and temperature-induced denaturation studies indicated an increase in alpha-helical content and protein stability for T31A apoLp-III compared to wild-type apoLp-III. In contrast, T144A had a decreased alpha-helical content and protein stability, while tryptophan fluorescence indicated increased exposure of the hydrophobic interior to buffer. Two mutant proteins that had lysine residues introduced in the hydrophobic core displayed a more pronounced decrease in secondary structure and protein stability. Lipid binding studies using phospholipid vesicles showed that T31A apoLp-III was able to transform phospholipid vesicles into discoidal particles but at a 3-fold reduced rate compared to wild-type apoLp-III. In contrast, the less stable apoLp-III mutants displayed an increased ability to transform phospholipid vesicles. These results demonstrate the inverse correlation between protein stability and the ability to transform phospholipid vesicles into discoidal protein-lipid complexes and that Thr-31 is a key determinant of the relatively low protein stability, thereby promoting apoLp-III to interact with lipid surfaces.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号