首页 | 本学科首页   官方微博 | 高级检索  
     


Direct organogenesis in hop - a prerequisite for an application ofA. tumefaciens-mediated transformation
Authors:S. Rakouský  J. Matoušek
Affiliation:1. Department of Molecular Genetics, Institute of Plant Molecular Biology, Academy of Sciences of the Czech Republic, Brani?ovská 31, 370 05, ?eské Budějovice, Czech Republic
Abstract:The regeneration ability of primary explants derived from mericlones of two commercial Bohemian hops was investigated. It was found that these hops are able to regenerate shoots by direct organogenesis on media containing BAP or zeatin at concentrations 0.5–2 mg dm−3. The highest regeneration of shoots was achieved from either petioles or internodes at frequencies 21% and 52%, respectively, on the medium containing zeatin (2 mg dm−3), while relatively low amount of regenerated shoots (1.3%) was observed for leaf blade explants. On the other hand, more efficient rooting occurred on the leaf blades then on other explants. A similar pattern of regeneration we observed for HLVd-infected mericlones of clone Osvald 31 even though viroid concentration inin vitro cultures was about 8-fold higher than in field-grown plants and was 31.1 pg mg−1 of fresh mass in the average. These results suggest that HLVd infection did not impair organogenesis. We found that high 2,4-D concentration pretreatment (11 mg dm−3) did not promote somatic embryogenesis. Although this treatment suppressed direct organogenesis, the inhibition was not complete and in low frequency the shoot regeneration was seen. Sensitivity of hop explants to antibiotics commonly used inAgrobacterium-mediated transformation was assayed. It was found that kanamycin (100–200 mg dm−3) suppressed efficiently callogenesis, root formation and shoot proliferation. An estimation of effect of kanamycin (200 mg dm−3) and ticarcillin (500 mg dm−3) on morphogenesis was performed using regeneration medium. The inhibitory effects observed suggest that these conditions could be used inAgrobacterium transformation/selection system. Communicated by J. TUPY
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号