首页 | 本学科首页   官方微博 | 高级检索  
     


Ligand binding energy and enzyme efficiency from reductions in protein dynamics
Authors:Williams Dudley H  Zhou Min  Stephens Elaine
Affiliation:Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, UK. dhw1@cam.ac.uk
Abstract:Tetrameric rabbit muscle glyceraldehyde 3-phosphate dehydrogenase (GAPDH; EC 1.2.1.12) binds successively four molecules of its cofactor (NAD+) with affinities of ca 10(11) M(-1), 10(9) M(-1), 10(7) M(-1), and 10(5) M(-1). The reduction in the dynamics of the protein is greatest upon binding the first NAD+ molecule. Smaller reductions then occur upon binding the second and third NAD+ molecules, and the fourth NAD+ molecule binds without dynamic change. Reduction of the GAPDH dynamics, with consequent improvements in its internal bonding, can account for the increase in NAD+ binding affinity from 10(5) M(-1) to 10(11) M(-1). Evidence is provided that comparable fractions of the binding energy of other ligands, and of the catalytic efficiency of enzymes, may be derived in the same way.
Keywords:enzyme catalysis   cooperativity   non-covalent interactions   binding energy
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号