首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The effect of monovalent cations on the association behavior of guanosine 5'-monophosphate, cytidine 5'-monophosphate, and their equimolar mixture in aqueous solution
Authors:J A Walmsley  B L Sagan
Abstract:1H- and 31P-nmr spectroscopy have been used to investigate the self-association of M2(5′-CMP) M = Li+, Na+, K+, Rb+, or (CH3)4 N+; 5′-CMP = cytidine 5′-monophosphate], the self-association of Li2(5′-GMP) (5′-GMP = guanosine 5′-monophosphate), and the heteroassociation of 5′-GMP and 5′-CMP (1 : 1 mole ratio) in aqueous solution as a function of the nature of the monovalent cation. Proton spectral differences for the different 5′-CMP salts exhibit a cation-size dependence and have been ascribed to a change in the stacking geometry. An average stacking association constant of 0.63 ± 0.24M?1 at 1°C, consistent with the weak stacking interactions of the cytosine bases, was determined for the 5′-CMP salts. Heteroassociation of 5′-GMP and 5′-CMP follows the reverse of the cation order for the formation of ordered aggregates of 5′-GMP. Heteroassociation occurs in the presence of Li+, Na+, and Rb+ ions, but only self-association occurs for the K+ nucleotides. Li2(5′-GMP), which does not form ordered species, self-associates to form disordered base stacks with a stacking constant of 1.63 ± 0.11M?1 at 1°C.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号