首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The use of rat Leydig tumor (R2C) and human hepatoma (HEPG2) cells to evaluate potential inhibitors of rat and human steroid aromatase
Authors:K M Doody  B A Murry  J I Mason
Institution:Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas 75235.
Abstract:The efficacies of 10-propargylestr-4-ene-3,17-dione (PED), 4-hydroxyandrostenedione (4-OHA) and the imidazole broad spectrum antimycotic drugs, econazole, imazalil, miconazole and ketoconazole, to inhibit the steroid aromatase activities of rat Leydig tumor (R2C) cells and human hepatoma (HEPG2) cells have been determined. The analysis of inhibition of steroid aromatase activity of intact cells provided further insight into the potential use of such drugs to block cellular estrogen synthesis. The IC50 values for the inhibition of aromatase activity of R2C cells by econazole, imazalil, miconazole, ketoconazole, 4-OHA and PED were 4, 9, 40, 1100, 11 and 10 nM, respectively. These drugs also inhibited the steroid aromatase activity of HEPG2 cells with corresponding IC50 values of 13, 27, 20, 15000, 2 and 2 nM, respectively; these findings were suggestive that the steroid aromatase of rat has many similarities to the human enzyme in its interaction with putative inhibitory compounds. Importantly, however, ketoconazole inhibited the rat aromatase more effectively than it did the human enzyme, while PED and 4-OHA were less effective inhibitors of the rat enzyme compared to that of human. These findings indicate differences in the potencies of various drugs to inhibit estrogen biosynthesis in human and rat cells. These may relate to differences in the two aromatase systems and/or differences in the stability of the drugs in the human hepatoma and rat Leydig tumor cells.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号