Involvement of nitric oxide and potassium channels in the bradykinin-induced vasodilatation in the rat kidney perfused ex situ |
| |
Authors: | Pompermayer Kênia Assreuy Jamil Vieira Maria Aparecida Ribeiro |
| |
Affiliation: | Department of Physiology and Biophysics, ICB, Universidade Federal de Minas Gerais, Av. Ant?nio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil. |
| |
Abstract: | The role of nitric oxide (NO), K(+) channels, and arachidonic acid metabolism, via cytochrome P450 and cyclooxygenase pathways, in the renal vasodilatory effect of bradykinin was examined in the isolated rat kidney perfused ex situ with a blood-free solution. Bradykinin (BK, 0.25-1.0 microM) induced a dose-dependent reduction of 10-35% in the relative renal vascular resistance (rRVR) of isolated kidneys preconstricted with phenylephrine (PHE, 0.17-0.35 microM). The vasodilating effect of 0.5 microM bradykinin was significantly inhibited by the nitric oxide synthase inhibitors, N(G)-nitro-L-arginine (95% inhibition) and N(G)-nitro-L-arginine methyl ester (45-75% inhibition). Clotrimazole, an inhibitor of cytochrome P450 pathway but not indomethacin, a cyclooxygenase inhibitor, reduced the renal vasodilator response to bradykinin by 84%. The nonspecific K(+) channel inhibitor, tetraethylammonium ion (TEA) and the selective inhibitor of Ca(2+)-activated K(+) channels, charybdotoxin (ChTX) greatly attenuated the vasodilator response to bradykinin by approximately 84% and 79%, respectively. These two K(+) channel inhibitors showed similar effects on vasodilatation induced by S-nitroso-acetyl-D,L-penicillamine (1 microM), a nitric oxide donor. The results suggest that bradykinin releases nitric oxide which, by opening potassium channels specifically the Ca(+)-dependent type, mediates the renal vasodilator response to bradykinin in the isolated kidney perfused ex situ. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|