The Mre11/Rad50/Nbs1 complex plays an important role in the prevention of DNA rereplication in mammalian cells |
| |
Authors: | Lee Alan Yueh-Luen Liu Enbo Wu Xiaohua |
| |
Affiliation: | Department of Molecular Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA. |
| |
Abstract: | The Mre11/Nbs1/Rad50 complex (MRN) plays multiple roles in the maintenance of genome stability, including repair of double-stranded breaks (DSBs) and activation of the S-phase checkpoint. Here we demonstrate that MRN is required for the prevention of DNA rereplication in mammalian cells. DNA replication is strictly regulated by licensing control so that the genome is replicated once and only once per cell cycle. Inactivation of Nbs1 or Mre11 leads to a substantial increase of DNA rereplication induced by overexpression of the licensing factor Cdt1. Our studies reveal that multiple mechanisms are likely involved in the MRN-mediated suppression of rereplication. First, both Mre11 and Nbs1 are required for facilitating ATR activation when Cdt1 is overexpressed, which in turn suppresses rereplication. Second, Cdt1 overexpression induces ATR-mediated phosphorylation of Nbs1 at Ser343 and this phosphorylation depends on the FHA and BRCT domains of Nbs1. Mutations at Ser343 or in the FHA and BRCT domains lead to more severe rereplication when Cdt1 is overexpressed. Third, the interaction of the Mre11 complex with RPA is important for the suppression of rereplication. This suggests that modulating RPA activity via a direct interaction of MRN is likely one of the effector mechanisms to suppress rereplication. Moreover, we demonstrate that MRN is also required for preventing the accumulation of DSBs when rereplication is induced. Therefore, our studies suggest new roles of MRN in the maintenance of genome stability through preventing rereplication and rereplication-associated DSBs when licensing control is compromised. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|