首页 | 本学科首页   官方微博 | 高级检索  
     


RACK1 (receptor for activated C‐kinase 1) interactions with spectrin repeat elements
Authors:Line M. Myklebust  Ole Horvli  Arnt J. Raae
Affiliation:Department of Molecular Biology, University of Bergen, Bergen, Norway
Abstract:Receptor for activated C‐kinase 1 (RACK1) is an intracellular scaffolding protein involved in a multitude of signalling pathways. The cytoskeleton is fundamental for intracellular cell signalling as it forms an interconnected network of regulatory proteins. Here, spectrin is a central component as it forms the actin–spectrin network that serves as docking surfaces for cellular components. The interaction between RACK1 and components of spectrin, the single spectrin repeats R16, R17 and the double spectrin repeat R1617 from the α‐spectrin chain were investigated by biosensor technology and docking analysis. RACK1 associated only weakly to R16 (KD = 1.0 ± 0.5 × 10?6 M), about 20 times stronger to R1617 (KD = 5.3 ± 0.7 × 10?8 M) and 100 times stronger to R17 (KD = 0.9 ± 0.3 × 10?8 M). Docking analysis showed that while R16 alone preferentially docked with its B‐helix, R17 docked through its A‐helix and BC loop. The double repeat and RACK1 mainly formed two different complex conformations. R1617 docked tangentially to the N/C‐terminal of RACK1 or radially along a groove on the outer surface of RACK1. These configurations could account for the slight increase in entropic and the decrease in enthalpic interactions for the R1617–RACK1 interaction, compared with the interactions of RACK1 to the two single repeats. Our results suggest a mode of interaction that allows spectrin to attach to the N/C part of RACK through the inter‐helical AB and BC loops and adopt a multitude of configurations in between the two limiting configurations. Copyright © 2014 John Wiley & Sons, Ltd.
Keywords:RACK1  SR (spectrin repeats)  biosensor  SPR (surface plasmon resonance)  binding kinetics  thermodynamic analysis and molecular docking
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号