首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mechanisms of homology-facilitated illegitimate recombination for foreign DNA acquisition in transformable Pseudomonas stutzeri
Authors:Meier Petra  Wackernagel Wilfried
Institution:Genetik, Fachbereich Biologie, Geo- und Umweltwissenschaften, Carl von Ossietzky Universit?t Oldenburg, POB 2503, D-26111 Oldenburg, Germany.
Abstract:Intra- and interspecific natural transformation has been observed in many prokaryotic species and is considered a fundamental mechanism for the generation of genetic variation. Recently, it has been described in detail how, in transformable Acinetobacter BD413 and Streptococcus pneumoniae, long stretches of nucleotides lacking homology were integrated into recipient genomes when they were linked on one side to a small piece of DNA with homology to resident DNA serving as a recA-dependent recombination anchor. Now, such homology-facilitated illegitimate recombination (HFIR) has also been detected in transformable Pseudomonas stutzeri. However, analysis of the recombinants revealed qualitative and quantitative differences in their generation compared with that in Acinetobacter BD413. In P. stutzeri, foreign DNA with an anchor sequence was integrated 105- to 106-fold less frequently than fully homologous DNA, but still at least 200-fold more frequently than without the anchor. The anchor sequence could be as small as 311 bp. Remarkably, in 98% of the events, the 3' end was integrated within the homologous anchor, whereas the 5' end underwent illegitimate fusion. Moreover, about one-third of the illegitimate fusion sites shared no or only a single identical basepair in foreign and resident DNA. The other fusions occurred within microhomologies of up to 6 bp with a higher GC content on average than the interacting nucleotide sequences. Foreign DNA of 69-1903 bp was integrated, and resident DNA of 22-2345 bp was lost. In a recA mutant, HFIR was not detectable. The findings suggest that genomic acquisition of foreign DNA by HFIR during transformation occurs widely in prokaryotes, but that details of the required recombination and strand fusion mechanisms may differ between organisms from different genera.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号