首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Computational methods for diffusion-influenced biochemical reactions
Authors:Dobrzynski Maciej  Rodríguez Jordi Vidal  Kaandorp Jaap A  Blom Joke G
Institution:CWI (Center for Mathematics and Computer Science), Kruislaan 413 and Section Computational Science, Faculty of Science, University of Amsterdam, Kruislaan 403, Amsterdam, The Netherlands. m.dobrzynski@cwi.nl
Abstract:MOTIVATION: We compare stochastic computational methods accounting for space and discrete nature of reactants in biochemical systems. Implementations based on Brownian dynamics (BD) and the reaction-diffusion master equation are applied to a simplified gene expression model and to a signal transduction pathway in Escherichia coli. RESULTS: In the regime where the number of molecules is small and reactions are diffusion-limited predicted fluctuations in the product number vary between the methods, while the average is the same. Computational approaches at the level of the reaction-diffusion master equation compute the same fluctuations as the reference result obtained from the particle-based method if the size of the sub-volumes is comparable to the diameter of reactants. Using numerical simulations of reversible binding of a pair of molecules we argue that the disagreement in predicted fluctuations is due to different modeling of inter-arrival times between reaction events. Simulations for a more complex biological study show that the different approaches lead to different results due to modeling issues. Finally, we present the physical assumptions behind the mesoscopic models for the reaction-diffusion systems. AVAILABILITY: Input files for the simulations and the source code of GMP can be found under the following address: http://www.cwi.nl/projects/sic/bioinformatics2007/
Keywords:
本文献已被 PubMed Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号