Cystic fibrosis transmembrane conductance regulator activation by cAMP-independent mechanisms |
| |
Authors: | He, Zhaoping Raman, Sasikala Guo, Yi Reenstra, William W. |
| |
Abstract: | Recent studieshave demonstrated that several compounds with diverse structures canactivate wild-type cystic fibrosis transmembrane conductance regulator(CFTR) by non-receptor-mediated mechanisms. Some of these compoundshave been shown to enhance cAMP-dependent activation of F508-CFTR.This study was undertaken to compare the mechanisms by which genistein,IBMX, milrinone, 8-cyclopentyl-1,3-dipropylxanthine (CPX), thebenzimidazolone NS004, and calyculin A increase CFTR activity. Ourstudies demonstrate that, in transfected NIH-3T3 cells, maximalenhancements of forskolin-dependent F508-CFTR activity are greatestwith genistein, IBMX, and NS004. Milrinone, genistein, CPX, NS004, andcalyculin A do not increase cellular cAMP. Because forskolin andcalyculin A increase in vivo phosphorylation of cAMP binding responseelement (CREB), the inability of milrinone, genistein, CPX, and NS004to increase CREB phosphorylation suggests that they do not stimulateprotein kinase A or inhibit phosphatase activity. Our data suggest thatthe mechanisms by which genistein and NS004 activate CFTR differ. Wealso demonstrate that, in NIH-3T3 cells, IBMX-dependent enhancement ofcAMP-dependent CFTR activity is not due to an increase in cellular cAMPand may involve a mechanism like that of genistein. |
| |
Keywords: | |
|
| 点击此处可从《American journal of physiology. Cell physiology》浏览原始摘要信息 |
|
点击此处可从《American journal of physiology. Cell physiology》下载全文 |
|