首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Hyperdopaminergia and altered locomotor activity in GABAB1-deficient mice
Authors:Vacher Claire-Marie  Gassmann Martin  Desrayaud Sandrine  Challet Etienne  Bradaia Amyaouch  Hoyer Daniel  Waldmeier Peter  Kaupmann Klemens  Pévet Paul  Bettler Bernhard
Institution:Institute of Physiology, Department of Clinical Biological Sciences, University of Basel, Basel, Switzerland; Novartis Institutes for Biomedical Research, Neuroscience Research, Basel, Switzerland; Department of Neurobiology of Rhythms, Institute of Cellular and Integrative Neurosciences, CNRS, University L. Pasteur, Strasbourg, France
Abstract:GABAB1-/- mice, which are devoid of functional GABAB receptors, consistently exhibit marked hyperlocomotion when exposed to a novel environment. Telemetry recordings now revealed that, in a familiar environment, GABAB1-/- mice display an altered pattern of circadian activity but no hyperlocomotion. This indicates that hyperlocomotion is only triggered when GABAB1-/- mice are aroused by novelty. In microdialysis experiments, GABAB1-/- mice exhibited a 2-fold increased extracellular level of dopamine in the striatum. Following D-amphetamine administration, GABAB1-/- mice released less dopamine than wild-type mice, indicative of a reduced cytoplasmic dopamine pool. The hyperdopaminergic state of GABAB1-/- mice is accompanied by molecular changes, including reduced levels of tyrosine hydroxylase mRNA, D1 receptor binding-sites and Ser40 phosphorylation of tyrosine hydroxylase. Tyrosine hydroxylase activity, tissue dopamine content and dopamine metabolism do not appear to be measurably altered. Pharmacological and electrophysiological experiments support that the hyperdopaminergic state of GABAB1-/- mice is not severe enough to inactivate dopamine D2 receptors and to disrupt D2-mediated feedback inhibition of tyrosine hydroxylase activity. The data support that loss of GABAB activity results in a sustained moderate hyperdopaminergic state, which is phenotypically revealed by contextual hyperlocomotor activity. Importantly, the presence of an inhibitory GABA tone on the dopaminergic system mediated by GABAB receptors provides an opportunity for therapeutic intervention.
Keywords:dopamine  GABAB receptors  hyperlocomotor activity  tyrosine hydroxylase  
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号