首页 | 本学科首页   官方微博 | 高级检索  
     


Omega oxidation of fatty acids and the pathway of 3-hydroxybutyric acid formation
Authors:William C. Schumann  Edward Hemmelgarn  Bernard R. Landau
Affiliation:Department of Medicine and Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106 USA
Abstract:Pathways followed by the carbons of long chain fatty acids in their conversion to 3-hydroxybutyric acid were traced and the contribution of ω-oxidation to fatty acid oxidation was determined in the cellular environment where ketone body formation occurs. 1-14C-, 2-14C-, and ω-14C-labeled fatty acids were injected into alloxan-induced diabetic rats in ketosis. 3-Hydroxybutyric acid was isolated from their urines and degraded. About 1.2 to 1.4 times as much 14C was found in carbon 1 as carbon 3 of 3-hydroxybutyric acid when the 1-14C-labeled fatty acids were injected and in carbon 2 as carbon 4 when the 2-14C-labeled fatty acids were injected. There was about 4 times as much incorporation into carbon 4 as carbon 2 of 3-hydroxybutyric acid formed from the ω-14C-labeled fatty acids. This means that 50% or more of the fatty acids were oxidized, so that the terminal two carbons of the fatty acids were converted to acetoacetyl-CoA without acetyl-CoA as an intermediate. Incorporation of 14C into carbons 1 and 2 of the hydroxybutyric acid reflects the distribution of 14C in acetyl-CoA. Incorporation into carbon 1 was very small when the ω-14C-labeled fatty acids were substrate. This means that ω-oxidation of fatty acids makes, at most, a small contribution to the formation of the acetyl-CoA pool from which acetoacetate is derived.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号