γ-Terpinene synthetase: A key enzyme in the biosynthesis of aromatic monoterpenes |
| |
Authors: | A.J. Poulose Rodney Croteau |
| |
Affiliation: | Department of Agricultural Chemistry and Program in Biochemistry and Biophysics, Washington State University, Pullman, Washington 99164 U.S.A. |
| |
Abstract: | Previous studies with thyme (Thymus vulgaris L.) leaf slices indicated that γ-terpinene (1,4-p-menthadiene) is the precursor of the aromatic monoterpenes p-cymene (4-isopropyl toluene) and thymol (5-methyl-2-isopropyl phenol) (Poulose, A. and Croteau, R. (1978) Arch. Biochem. Biophys.187, 307–314). A 105,000g supernatant obtained from an extract of young thyme leaves catalyzed the cyclization of both [1-3H]neryl pyrophosphate and [1-3H]geranyl pyrophosphate to γ-[3-3H]terpinene. No evidence for the interconversion of the acyclic precursors was obtained, and isotopic dilution experiments suggested that γ-terpinene was synthesized directly from these acyclic precursors without the involvement of any free intermediates. Competing phosphatase activity in the soluble preparation was removed by ammonium sulfate fractionation followed by gel filtration on Sephadex G-150. In these fractionation steps, γ-terpinene synthetase activity co-purified with small amounts of α-thujene (1-isopropyl-4-methylbicyclo[3.1.0]-hex-3-ene) and α-terpineol (p-menth-1-en-8-ol) synthetase activities, and these three activities could not be resolved by subsequent hydroxylapatite chromatography, anion exchange chromatography on QAE-Sephadex, or affinity chromatography on neroic acid-substituted agarose. All the enzymatic products were identified by radio chromatography and by the synthesis of derivatives followed by radio chromatography or crystallization to constant specific activity. γ-Terpinene synthetase has an apparent molecular weight of 96,000, shows a pH optimum at about 6.8, and requires Mg2+ for catalytic activity. Mn2+ can partially substitute for Mg2+, but other divalent cations are ineffective. Estimated values of V and Km are 3.5 nmol/h/mg and 9 μm, respectively, for neryl pyrophosphate, and 3.0 nmol/h/mg and 14 μm, respectively, for geranyl pyrophosphate. Enzymic activity is inhibited by sulfhydryl-directed reagents and inorganic pyrophosphate, but not by γ-terpinene, p-cymene, or thymol. Based on the specific location of tritium in the product, a mechanism is proposed which involves the cyclization of the acyclic precursor, loss of a proton from C5 to form the Δ4 double bond, and a 1,2-hydride shift from C4 to C8 to give γ-terpinene. A similar mechanism, but with loss of the proton from C6 and the formation of a cyclopropane ring, would yield α-thujene. |
| |
Keywords: | Author to whom all correspondence should be addressed. |
本文献已被 ScienceDirect 等数据库收录! |
|