首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Calcium-dependent adenylate cyclase from rat cerebral cortex: Activation by guanine nucleotides
Authors:Margaret A Brostrom  Charles O Brostrom  Donald J Wolff
Institution:Department of Pharmacology, Rutgers Medical School, College of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854 U.S.A.
Abstract:The adenylate cyclase activity of a participate preparation of rat cerebral cortex is composed of at least two contributing components, one of which requires a Ca2+-dependent regulator protein (CDR) for activity (Brostrom, C. O., Brostrom, M. A., and Wolff, D. J. (1977) J. Biol. Chem.252, 5677–5685). Each of these components of the activity was activated by GTP and its synthetic analog, 5-guanylylimidodiphosphate (Gpp(NH)p). The component of the adenylate cyclase activity which did not respond to CDR (CDR-independent activity) was stimulated approximately 60% by 100 μm GTP and 3.5-fold by 100 μm Gpp(NH)p. Concentrations of GTP required for maximal activation of the CDR-dependent adenylate cyclase component decreased as CDR concentrations in the assay were increased. Similarly, GTP pr Gpp(NH)p lowered the concentration of CDR required to produce half-maximal activation of this enzyme form. At saturating CDR concentrations, however, increases in activity were not observed with the addition of these nucleotides. The CDR-dependent component responded biphasically (activation followed by inhibition) to increasing free Ca2+ concentrations; both phases of this response occurred at lower free Ca2+ concentrations with GTP present in the assay. The concentration of chlorpromazine which inhibited activation of adenylate cyclase by CDR was elevated when GTP was present. The CDR-dependent form of activity, which is stabilized by CDR to thermal inactivation, was also stabilized by Gpp(NH)p. The increase in stability produced by Gpp(NH)p did not require the presence of CDR, and stabilization with both Gpp(NH)p and CDR was greater than that obtained with either Gpp(NH)p or CDR alone.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号