首页 | 本学科首页   官方微博 | 高级检索  
     


Visualizing the assembly and disassembly mechanisms of the MuB transposition targeting complex
Authors:Greene Eric C  Mizuuchi Kiyoshi
Affiliation:Laboratory of Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
Abstract:MuB, a protein essential for replicative DNA transposition by the bacteriophage Mu, is an ATPase that assembles into a polymeric complex on DNA. We used total internal reflection fluorescence microscopy to observe the behavior of MuB polymers on single molecules of DNA. We demonstrate that polymer assembly is initiated by a stochastic nucleation event. After nucleation, polymer assembly occurs by a mechanism involving the sequential binding of small units of MuB. MuB that bound to A/T-rich regions of the DNA assembled into large polymeric complexes. In contrast, MuB that bound outside of the A/T-rich regions failed to assemble into large oligomeric complexes. Our data also show that MuB does not catalyze multiple rounds of ATP hydrolysis while remaining bound to DNA. Rather, a single ATP is hydrolyzed, then MuB dissociates from the DNA. Finally, we show that "capping" of the enhanced green fluorescent protein-MuB polymer ends with unlabeled MuB dramatically slows, but does not halt, dissociation. This suggests that MuB dissociation occurs through both an end-dependent mechanism and a slower mechanism wherein subunits dissociate from the polymer interior.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号