首页 | 本学科首页   官方微博 | 高级检索  
     


A rational design of synthetic peptide vaccine with a built-in adjuvant. A modular approach for unambiguity.
Authors:J P Defoort  B Nardelli  W Huang  J P Tam
Affiliation:Rockefeller University, New York, NY.
Abstract:We describe a peptide vaccine model containing a built-in adjuvant. This model used a multiple antigen peptide system (MAPS) to amplify peptide antigens and a lipoamino acid, tripalmitoyl glyceryl cysteine (P3C), as a built-in adjuvant. An 18-residue peptide antigen (B2) derived from the third variable domain (amino acid 312-329) of the glycoprotein gp120 of type I human immunodeficiency virus (HIV-1) was used in this model. This peptide antigen is a suitable target since it consists of neutralizing, T-helper, and T-cytotoxic epitopes. The peptide antigen in a tetravalent MAPS format (B2M-P3C) with a lipophilic attachment was synthesized by two routes for comparison: a direct stepwise approach and an indirect modular approach. In the stepwise approach, each residue was sequentially added to the peptide resin to give B2M-P3C and the P3C was incorporated to the side chain of a carboxyl terminal lysine as Fmoc-Lys(P3C). In the modular approach, a module containing a chloroacetylated core matrix of MAPS (M-P3C) with a carboxyl tetrapeptide bearing Lys(P3C) and a second module containing the peptide antigen B2 with a cysteine at its terminus were synthesized and purified separately, and then coupled to each other to form B2M-P3C. In the modular approach, the molecular ion of B2M-P3C was unambiguously identified by ion-spray mass spectrometry. B2M-P3C, administered in liposomes without any adjuvant such as Freund's complete adjuvant, was used to immunize mice and found to induce gp120-specific antibodies in vitro, and prime cytotoxic T lymphocytes in vivo.(ABSTRACT TRUNCATED AT 250 WORDS)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号