首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Thermodynamics of double- and triple-helical aggregates formed by self-complementary oligoribonucleotides of the type rAxUy
Authors:J Ohms  T Ackermann
Institution:Institut für Physikalische Chemie, Universit?t Freiburg, FRG.
Abstract:The thermal denaturation of a series of oligoribonucleotides of the form rAxUy (x = 5 or 7 and y = 3-11) has been characterized by means of IR spectroscopy, UV spectroscopy, and DSC. IR spectra proved the occurrence of double- and triple-helical regions at various contents of uracil residues in the nucleotide. From DSC measurements transition enthalpies, entropies, and free enthalpies were derived. The effect of fraying in terminal base pairs of symmetrical nucleotides (x = y) was quantified. Thermodynamic excess parameters due to dangling ends (5'A and 3'U), terminal AU base pairs, and UAU base triplets were obtained by comparing DSC results from different nucleotides. Empirical values for contributions of base stacking and pairing to the stability of terminal AU base pairs have been estimated: for nucleotides under study with a high degree of fraying at the ends of the helix the major stabilization effect comes from base stacking. The size of the cooperative unit lambda in most nucleotides under study is larger than 1; i.e., in these cases intermolecular cooperation takes place. Through deconvolution of DSC data maximum populations of intermediate states FI,max were obtained. On the basis of these results all nucleotides under study were proved to melt in multistate manner. FI,max increases with the number of base pairs, decreases through dangling ends, and shows approximately constant values for triple-helical aggregates of the series rA5Uy as well as rA7Uy.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号