首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Analysis of marginal zone B cell development in the mouse with limited B cell diversity: role of the antigen receptor signals in the recruitment of B cells to the marginal zone
Authors:Kanayama Naoki  Cascalho Marilia  Ohmori Hitoshi
Institution:Department of Bioscience and Biotechnology, Faculty of Engineering, Okayama University, Tsushima-Naka, Okayama, Japan.
Abstract:The quasimonoclonal (QM) mouse provides an intelligible model to analyze the B cell selection as the competition between two major 4-hydroxy-3-nitrophenylacetyl-specific B cell populations whose BCR are comprised of the knockin V(H)17.2.25 (V(H)T)-encoded H chain and the lambda1 or lambda2 L chain. In this study, we show the QM system is useful to examine how BCR signals guide a subset of B cells to the marginal zone (MZ). Compared with the control C57BL/6 mice, the QM mice had approximately 2.7-fold increased number of B cells exhibiting the MZ B cell phenotype and a larger MZ area in the spleen. Interestingly, V(H)T/lambda2 B cells significantly predominated over V(H)T/lambda1 B cells in MZ-(V(H)T/lambda1:V(H)T/lambda2 approximately 3:7) and transitional 2-B cell subsets, while these two populations were comparable in immature, transitional 1, and mature counterparts. Thus, the biased use of lambda2 in the MZ B cells may be the result of selection in the periphery. The enlargement of MZ B cell compartment and the preferred recruitment of the V(H)T/lambda2 B cells were further augmented by doubling the V(H)T gene, but dampened by the dysfunction of Bruton's tyrosine kinase, suggesting a positive role of BCR signaling in this selection. Comparison of Ag specificity between V(H)T/lambda1 and V(H)T/lambda2 IgM mAbs revealed a polyreactive nature of the V(H)T/lambda2 BCR, including the reactivity with ssDNA. Taken together, it is suggested that polyreactivity (including self-reactivity) of BCR is crucial in driving B cells to differentiate into the MZ phenotype.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号