首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Expiratory flow limitation and intrinsic positive end-expiratory pressure in obesity
Authors:Pankow  W; Podszus  T; Gutheil  T; Penzel  T; Peter  J-H; Von Wichert  P
Abstract:Breathing at very low lung volumes might beaffected by decreased expiratory airflow and air trapping. Our purposewas to detect expiratory flow limitation (EFL) and, as a consequence, intrinsic positive end-expiratory pressure(PEEPi) in grossly obesesubjects (OS). Eight OS with a mean body mass index (BMI) of 44 ± 5 kg/m2 and six age-matchednormal-weight control subjects (CS) were studied in different bodypositions. Negative expiratory pressure (NEP) was used to determineEFL. In contrast to CS, EFL was found in two of eight OS in the uprightposition and in seven of eight OS in the supine position. DynamicPEEPi and mean transdiaphragmatic pressure (mean Pdi) were measured in all six CS and in six of eight OS.In OS, PEEPi increased from 0.14 ± 0.06 (SD) kPa in the upright position to 0.41 ± 0.11 kPa inthe supine position (P < 0.05) anddecreased to 0.20 ± 0.08 kPa in the right lateral position(P < 0.05, compared with supine),whereas, in CS, PEEPi wassignificantly smaller (<0.05 kPa) in each position. In OS, mean Pdiin each position was significantly larger compared with CS. Mean Pdiincreased from 1.02 ± 0.32 kPa in the upright position to 1.26 ± 0.17 kPa in the supine position (not significant) and decreasedto 1.06 ± 0.26 kPa in the right lateral position(P < 0.05, compared with supine),whereas there were no significant changes in CS. We conclude that in OS1) tidal breathing can be affectedby EFL and PEEPi;2) EFL andPEEPi are promoted by the supineposture; and 3) the increaseddiaphragmatic load in the supine position is, in part, related toPEEPi.

Keywords:
点击此处可从《Journal of applied physiology (Bethesda, Md. : 1985)》浏览原始摘要信息
点击此处可从《Journal of applied physiology (Bethesda, Md. : 1985)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号