Forms of natural selection controlling the genomic evolution in nodule bacteria |
| |
Authors: | N. A. Provorov E. E. Andronov O. P. Onishchuk |
| |
Affiliation: | 1.All-Russia Research Institute for Agricultural Microbiology,St. Petersburg,Russia |
| |
Abstract: | The role of different forms of natural selection in the evolution of genomes in root nodule bacteria (rhizobia) is analyzed for the first time. In these nitrogen-fixing symbionts of leguminous plants, two types of genome organization are revealed: (i) unitary type, where over 95% of genetic information is encoded by chromosomes (5.3–5.5 Mb in Azorhizobium, 7.0–7.8 Mb in Mesorhizobium, 7.3–10.1 Mb in Bradyrhizobium); (ii) multipartite type, where up to 50% of genetic information is allocated to plasmids or chromids which may exceed 2 Mb in size and usually control the symbiotic properties (pSyms) in fast-growing rhizobia (Rhizobium, Sinorhizobium, Neorhizobium). Emergence of fast-growing species with narrow host ranges are correlated to the extension of extrachromosomal parts of genomes, including the increase in pSyms sizes (in Sinorhizobium). An important role in this evolution is implemented by diversifying selection since the genomic diversity evolved in rhizobia owing to symbiotic interactions with highly divergent legumes. However, analysis of polymorphism in nod genes (encoding synthesis of lipo-chitooligosaccharide signaling Nod factors) suggests that the impacts of diversifying selection are restricted to the bacterial divergence for host specificity and do not influence the overall genome organization. Since the extension of rhizobia genome diversity results from the horizontal sym gene transfer occurring with low frequencies, we suggest that this extension is due to the frequency-dependent selection anchoring the rare genotypes in bacterial populations. It is implemented during the rhizobia competition for nodulation encoded by the functionally diverse cmp genes. Their location in different parts of bacterial genomes may be considered as an important factor of their adaptive diversification implemented in the host-associated microbial communities. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|