首页 | 本学科首页   官方微博 | 高级检索  
     


Charged residues in the beta2 subunit involved in GABAA receptor activation
Authors:Kash Thomas L  Dizon Maria-Johanna F  Trudell James R  Harrison Neil L
Affiliation:Graduate Program in Neuroscience, Weill Graduate School of Biomedical Sciences, Cornell University, New York, NY 10021, USA. tlk2003@med.cornell.edu
Abstract:Fast synaptic inhibition in the mammalian central nervous system is mediated primarily via activation of the gamma-aminobutyric acid type A receptor (GABAA-R). Upon agonist binding, the receptor undergoes a structural transition from the closed to the open state. This transition, known as gating, is thought to be associated with a sequence of conformational changes originating at the agonist-binding site, ultimately resulting in opening of the channel. Using site-directed mutagenesis and several different GABAA-R agonists, we identified a number of highly conserved charged residues in the GABAA-R beta2 subunit that appear to be involved in receptor activation. We then used charge reversal double mutants and disulfide trapping to investigate the interactions between these flexible loops within the beta2 subunit. The results suggest that interactions between an acidic residue in loop 7 (Asp146) and a basic residue in pre-transmembrane domain-1 (Lys215) are involved in coupling agonist binding to channel gating.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号