首页 | 本学科首页   官方微博 | 高级检索  
     


Testing the growth rate vs. geochemical hypothesis for latitudinal variation in plant nutrients
Authors:Lovelock C E  Feller I C  Ball M C  Ellis J  Sorrell B
Affiliation:Centre for Marine Studies and School of Integrative Biology, University of Queensland, St Lucia, Queensland 4072, Australia;
Smithsonian Environmental Research Center, Edgewater, MD 20132, USA;
Ecosystem Dynamics Group, Research School of Biological Sciences, Australian National University, Canberra, ACT 2601, Australia;
National Institute of Water and Atmospheric Science, PO Box 11-115, Hamilton, New Zealand
Abstract:Two hypotheses have been proposed to explain increases in plant nitrogen (N) and phosphorus (P) concentrations with latitude: (i) geochemical limitation to P availability in the tropics and (ii) temperature driven variation in growth rate, where greater growth rates (requiring greater nutrient levels) are needed to complete growth and reproduction within shorter growing seasons in temperate than tropical climates. These two hypotheses were assessed in one forest type, intertidal mangroves, using fertilized plots at sites between latitudes 36º S and 27º N. The N and P concentrations in mangrove leaf tissue increased with latitude, but there were no trends in N : P ratios. Growth rates of trees, adjusted for average minimum temperature showed a significant increase with latitude supporting the Growth Rate Hypothesis. However, support for the Geochemical Hypothesis was also strong; both photosynthetic P use efficiency and nutrient resorption efficiency decreased with increasing latitude, indicating that P was less limiting to metabolism at the higher latitudes. Our study supports the hypothesis that historically low P availability in the tropics has been an important selective pressure shaping the evolution of plant traits.
Keywords:Ecological stoichiometry    N : P ratio    nitrogen    nutrient resorption    phosphorus
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号