首页 | 本学科首页   官方微博 | 高级检索  
     


Mediation of Herbicide Effects by Hormone Interactions
Authors:Klaus?Grossmann  author-information"  >  author-information__contact u-icon-before"  >  mailto:Klaus.grossmann@basf-ag.de"   title="  Klaus.grossmann@basf-ag.de"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author
Affiliation:(1) BASF Aktiengesellschaft, Agricultural Center, PO Box 120, D-67114 Limburgerhof, Germany
Abstract:Chemical manipulation of the phytohormone system involves the use of herbicides for weed control in modern crop production. In the latter case, only compounds interacting with the auxin system have gained practical importance. Auxin herbicides mimic the overdose effects of indole-3-acetic acid (IAA), the principal natural auxin in higher plants. With their ability to control, particularly, dicotyledonous weeds in cereal crops, the synthetic auxins have been among the most successful herbicides used in agriculture. A newly discovered sequential hormone interaction plays a decisive role in their mode of action. The induction of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase in ethylene biosynthesis is the primary target process, following auxin herbicide signalling. Although the exact molecular target site has yet to be identified, it appears likely to be at the level of auxin receptor(s) for perception or signalling, leading ultimately to species- and organ-specific de novo enzyme synthesis. In sensitive dicots, ethylene causes epinastic growth and tissue swelling. Ethylene also triggers the biosynthesis of abscisic acid (ABA), mainly through the stimulated cleavage of xanthophylls to xanthoxal, catalyzed by 9-cis-epoxycarotenoid dioxygenase (NCED). ABA mediates stomatal closure which limits photosynthetic activity and biomass production, accompanied by an overproduction of reactive oxygen species. Growth inhibition, senescence and tissue decay are the consequences. Recent results suggest that ethylene-triggered ABA is not restricted to the action of auxin herbicides. It may function as a module in the signalling of a variety of stimuli leading to plant growth regulation. An additional phenomenon is caused by the auxin herbicide quinclorac which also controls grass weeds. Here, quinclorac induces the accumulation of phytotoxic levels of cyanide, a co-product of ethylene, which ultimately derives from herbicide-induced ACC synthase activity in the tissue. Phytotropins are a further group of hormone-related compounds which are used as herbicides. They inhibit polar auxin transport by interacting with a regulatory protein, the NPA-binding protein, of the auxin efflux carrier. This causes an abnormal accumulation of IAA and applied synthetic auxins in plant meristems. Growth inhibition, loss of tropic responses and, in combination with auxin herbicides, synergistic effects are the consequences.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号