首页 | 本学科首页   官方微博 | 高级检索  
     


Heme oxygenase-1 deletion affects stress erythropoiesis
Authors:Cao Yu-An  Kusy Sophie  Luong Richard  Wong Ronald J  Stevenson David K  Contag Christopher H
Affiliation:Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America.
Abstract:

Background

Homeostatic erythropoiesis leads to the formation of mature red blood cells under non-stress conditions, and the production of new erythrocytes occurs as the need arises. In response to environmental stimuli, such as bone marrow transplantation, myelosuppression, or anemia, erythroid progenitors proliferate rapidly in a process referred to as stress erythropoiesis. We have previously demonstrated that heme oxygenase-1 (HO-1) deficiency leads to disrupted stress hematopoiesis. Here, we describe the specific effects of HO-1 deficiency on stress erythropoiesis.

Methodology/Principal Findings

We used a transplant model to induce stress conditions. In irradiated recipients that received hmox+/− or hmox+/+ bone marrow cells, we evaluated (i) the erythrocyte parameters in the peripheral blood; (ii) the staining intensity of CD71-, Ter119-, and CD49d-specific surface markers during erythroblast differentiation; (iii) the patterns of histological iron staining; and (iv) the number of Mac-1+-cells expressing TNF-α. In the spleens of mice that received hmox+/− cells, we show (i) decreases in the proerythroblast, basophilic, and polychromatophilic erythroblast populations; (ii) increases in the insoluble iron levels and decreases in the soluble iron levels; (iii) increased numbers of Mac-1+-cells expressing TNF-α; and (iv) decreased levels of CD49d expression in the basophilic and polychromatophilic erythroblast populations.

Conclusions/Significance

As reflected by effects on secreted and cell surface proteins, HO-1 deletion likely affects stress erythropoiesis through the retention of erythroblasts in the erythroblastic islands of the spleen. Thus, HO-1 may serve as a therapeutic target for controlling erythropoiesis, and the dysregulation of HO-1 may be a predisposing condition for hematologic diseases.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号