Abstract: | The effect of acidic neurospecific protein S-100 on the phosphorylation of brain and liver nuclear proteins with 1 and 10 microM ATP was investigated. It was shown that protein S-100 increases the phosphorylation of brain nuclear proteins, while antigen D, another acidic neurospecific protein half-identical to 14-3-2 protein, inhibits this process. Ca2+ and cAMP at concentration of 10(-6) M do not affect the phosphorylation of brain nuclear proteins. In control assays the tracer 32P is presumably incorporated into high molecular weight nuclear protein fractions (Mr greater than 40000). After addition of protein S-100 the tracer is mainly incorporated into these proteins as well independently of ATP concentration (1 or 10 microM). The phosphorylation of nuclear proteins with molecular weights above 100000 is mostly increased in this case. At ATP concentration of 1 microM protein S-100 decreases histone phosphorylation 2.3 times but does not affect that of non-histone proteins. However, at 10 microM ATP the inhibitory action of this protein on histone phosphorylation is absent. The possible mechanisms of protein S-100 action on nuclear proteins phosphorylation are discussed. |