首页 | 本学科首页   官方微博 | 高级检索  
     


Neuronal metabolism and DOPA decarboxylase immunoreactivity in terminal noradrenergic sympathetic axons of rat.
Authors:R Mann  C Bell
Affiliation:Department of Physiology, University of Melbourne, Australia.
Abstract:This study was undertaken to determine whether immuno-histochemical staining for DOPA decarboxylase (DDC) is present in axons of rat noradrenergic sympathetic neurons. A sparse plexus of varicose axons exhibiting DDC-like immunoreactivity (DDC-IR) was associated with blood vessels and acini in the submandibular gland, but this was much less extensive than the population that exhibited tyrosine hydroxylase-like immunoreactivity (TH-IR). The varicose terminal TH-IR axons in atrium, spleen, and vas deferens were devoid of DDC-IR both in grown rats and during the post-natal period of axon growth, although weak DDC-IR was seen in large pre-terminal nerve bundles. Similar patterns of staining were seen with paraffin-embedded and with frozen, formaldehyde-fixed material. No enhancement of DDC-IR was seen in any tissue after chronic alteration of catecholamine turnover with reserpine or alpha-methyl-para-tyrosine, and the numbers of submandibular DDC-IR axons were not increased by disruption of axonal transport with colchicine or by decentralization of the superior cervical ganglion. We conclude that terminal noradrenergic axons contain insufficient DDC-IR for microscopic visualization, regardless of their metabolic state, reinforcing previous evidence that DDC-IR can be used as a histochemical marker for dopaminergic axons. By this criterion, the rat submandibular gland may receive a sparse dopaminergic innervation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号