首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Defective elongation of fatty acids in a recessive 25-hydroxycholesterol-resistant mutant cell line
Authors:S R Panini  R J Lutz  L Wenger  J Miyake  S Leonard  A Andalibi  A J Lusis  M Sinensky
Institution:Eleanor Roosevelt Institute for Cancer Research, Denver, Colorado 80206.
Abstract:The Chinese hamster ovary recessive mutant, crB, has been selected for its resistance to the cytotoxic effects of 25-hydroxycholesterol in sterol-free media (Sinensky, M., Logel, J., and Torget, R. (1982) J. Cell. Physiol. 113, 314-319). Growth of crB in a chemically defined lipid-poor medium is very slow and is enhanced by a mixture of saturated and unsaturated fatty acids. Incorporation of 3H]acetate into total fatty acids is 4-fold lower in crB compared to that in parental Chinese hamster ovary K1 and in contrast to the wild-type cells, crB cells are unable to synthesize either stearate or oleate. In addition, crB cells can not elongate exogenous palmitate, while they are capable of desaturating exogenous stearate. The mutant cells are also pleiotropically defective in the regulation of mRNA levels for the enzymes of cholesterol biosynthesis. 25-Hydroxycholesterol is a poor regulator of the synthesis and degradation of the rate-limiting enzyme, 3-hydroxy-3-methylglutaryl-coenzyme A reductase in crB in comparison to the wild-type Chinese hamster ovary K1 cells. The defect in the elongation of fatty acids is reversed in revertants of crB selected for their ability to grow in lipid-poor medium. Such revertants exhibit normal regulation of 3-hydroxy-3-methylglutaryl-CoA reductase activity by 25-hydroxycholesterol. Regulation of reductase activity in crB cells can also be restored by supplementing the culture medium with a mixture of fatty acids that restores normal growth rate. The defective regulation of reductase in crB does not appear to be due to nonspecific adverse effects of fatty acid starvation nor is it due to any gross change in the fatty acid composition of cellular phospholipids. These results strongly suggest a direct relationship between the fatty acid auxotrophy of crB and defective regulation of the enzymes of cholesterol biosynthesis.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号