首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of temperature and relative humidity on sporulation of Metarhizium anisopliae var. acridum in mycosed cadavers of Schistocerca gregaria.
Authors:S Arthurs  M B Thomas
Affiliation:Leverhulme Unit for Population Biology and Biological Control, NERC Centre for Population Biology and CABI Bioscience, Imperial College, Silwood Park, Ascot, Berkshire, SL5 7PY, United Kingdom. sarthurs@urbanento.tamu.edu
Abstract:The effects of relative humidity (RH) and temperature on the sporulation of Metarhizium anisopliae var. acridum on mycosed cadavers of desert locust, Schistocerca gregaria, were assessed in the laboratory. Quantitative assessments of conidial production over 10 days under constant conditions showed that sporulation was optimized at RH > 96% and at temperatures between 20 and 30 degrees C. Under both these conditions >10(9) conidia/cadaver were produced. At 25 degrees C, conidial yield was maximized under conditions in which cadavers remained in contact with damp substrate. Relatively little sporulation occurred at 15 degrees C (< 3 x 10(7) conidia/cadaver) and 40 degrees C (< 4 x 10(6) conidia/cadaver) and no sporulation occurred at 10 or 45 degrees C. Following incubation, conidial yield was closely related to the water content of locust cadavers. In separate tests, locust cadavers were incubated for 10 days under diurnally fluctuating temperature and RH that comprised favorable (25 degrees C/100% RH) alternating with unfavorable (40 degrees C/80% RH) conditions for sporulation. In this case, fewer conidia were produced compared with cadavers that were incubated under the favorable conditions for an equal period cumulatively but were not periodically exposed to unfavorable conditions. However, this reduced sporulation observed with the fluctuating condition was not observed when cadavers were similarly incubated under favorable/unfavorable conditions of temperature but were not periodically exposed to the low RH condition. This result implies that sporulation is a dynamic process, dependent not only on periodic exposure to favorable RH but also on the interrelation of this with low RH. Associated tests and the monitoring of changes in cadaver weights imply that the mechanism driving the reduced sporulation under fluctuating RH is the net water balance of cadavers, i.e. the cumulative ability of the fungus/cadaver to adsorb water necessary for sporulation at high RH is restricted by water loss associated with intermittent exposure to a low RH. The duration of daily exposure to high humidity appears to be a crucial constraint to the recycling ability of M. anisopliae var. acridum.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号