首页 | 本学科首页   官方微博 | 高级检索  
   检索      


First Year Ontogenetic Diet Patterns in Two Coexisting <Emphasis Type="Italic">Sander</Emphasis> Species, <Emphasis Type="Italic">S. lucioperca</Emphasis> and <Emphasis Type="Italic">S. volgensis</Emphasis> in Lake Balaton
Authors:Email author" target="_blank">András?SpecziárEmail author
Institution:(1) Balaton Limnological Research Institute of the Hungarian Academy of Sciences, Klebelsberg K. u. 3.,, H-8237 Tihany, Hungary
Abstract:First year ontogenetic diet patterns and size-dependent diet partitioning of two coexisting piscivorous percids, pikeperch and Volga pikeperch were analysed in Lake Balaton. Diet patterns of the two pikeperches followed a common trend, catching larger preys at larger sizes, but in details they were different. Until 20–30 mm size age-0 pikeperch fed on planktonic microcrustaceans and were found only in the pelagic zone. After this size, from the end of May, a part of the stock shifted habitat and moved to the littoral zone to feed on Limnomysis benedeni. Majority of the stock stayed in the pelagic zone and shifted to Leptodora kindtii. In the pelagic group early piscivory, mainly cannibalism, occurred only sporadically. However, the few individuals that reached 100 mm size during the first year were typically piscivorous. Volga pikeperch stayed in the pelagic zone during the first year and shifted from planktonic microcrustaceans to benthic macroinvertebrates. General patterns of the first year diet ontogeny were similar in the different areas of Lake Balaton in both pikeperches with only some differences in the secondary food resources, especially in the share of chironomids. Chironomids were eaten at highest ratio by the two fish species in the Keszthely basin in accordance with their abundance pattern. Maximum prey sizes increased significantly with predator size in both pikeperch and Volga pikeperch. However, pikeperch ate much larger prey than did Volga pikeperch at the same size although they have a similar mouth gape to length ratio. These two, closely related pikeperches, although occur in the same habitat and have similar patterns of diet ontogeny, effectively partition food resources in Lake Balaton during the first growing season, except in the very beginning of their ontogeny at L = 5–10 mm size. It appears that age-0 Volga pikeperch is not a significant competitor for the economically highly rated pikeperch in Lake Balaton. On the other hand, it is age-0 pikeperch that might affect Volga pikeperch during its early ontogeny, in the planktivorous stage.
Keywords:ontogenetic diet shift  diet partitioning  piscivorous fish  pikeperch  Volga pikeperch  Lake Balaton
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号