首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Investigations of N-linked macrocycles for 111in and 90Y labeling of proteins
Institution:1. Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA;2. Department of Nuclear Engineering, University of California, Berkeley, CA, USA;3. Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA;4. Los Alamos National Laboratory, Los Alamos, NM, USA
Abstract:To simplify the synthesis of macrocyclic chelators, commercially available macrocyclic amines were condensed with halogenated acetic acid to prepare the five chelators 12N4 (DOTA), 14N4 (TETA), 15N4, 9N3 and 12N3. Only 12N4 and 9N3 showed efficient labeling of the free chelator with 111In and 90Y. Serum stability studies at 37 °C with In-labeled DTPA, 12N4 and 9N3 showed no loss of label over 2 days whereas, with 90Y, only 12N4 showed stabilities comparable to DTPA. The 12N4 chelator was derivatized by attaching biotin on one N-acetate group to simulate the attachment to protein. The serum stability for both 111In and 90Y was identical to that of biotin derivatized DTPA and lower than that of the free chelators. Biodistribution studies in normal mice of a model protein (avidin) labeled with 90Y via biotinylated 12N4 and biotinylated DTPA showed identical distribution at 1 day except in bone where the %ID/g for the macrocyclic-conjugated protein (3.4 ± 0.5, N = 8) was significantly (P < 0.001) lower than that of the DTPA-conjugated protein (9.4 ± 0.9, N = 7). In conclusion, macrocycles may be readily synthesized from the macrocyclic amines and several show useful stabilities with In and Y. When N-linked to a protein, the Y biodistribution was found to be superior to that of the corresponding DTPA-coupled protein.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号