首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Neural network models for earthquake magnitude prediction using multiple seismicity indicators
Authors:Panakkat Ashif  Adeli Hojjat
Institution:Department of Civil and Environmental Engineering and Geodetic Science, The Ohio State University, Columbus, OH 43210, USA.
Abstract:Neural networks are investigated for predicting the magnitude of the largest seismic event in the following month based on the analysis of eight mathematically computed parameters known as seismicity indicators. The indicators are selected based on the Gutenberg-Richter and characteristic earthquake magnitude distribution and also on the conclusions drawn by recent earthquake prediction studies. Since there is no known established mathematical or even empirical relationship between these indicators and the location and magnitude of a succeeding earthquake in a particular time window, the problem is modeled using three different neural networks: a feed-forward Levenberg-Marquardt backpropagation (LMBP) neural network, a recurrent neural network, and a radial basis function (RBF) neural network. Prediction accuracies of the models are evaluated using four different statistical measures: the probability of detection, the false alarm ratio, the frequency bias, and the true skill score or R score. The models are trained and tested using data for two seismically different regions: Southern California and the San Francisco bay region. Overall the recurrent neural network model yields the best prediction accuracies compared with LMBP and RBF networks. While at the present earthquake prediction cannot be made with a high degree of certainty this research provides a scientific approach for evaluating the short-term seismic hazard potential of a region.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号