首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mice transgenic for exon 1 of Huntington's disease: properties of cholinergic and dopaminergic pre-synaptic function in the striatum
Authors:Vetter J M  Jehle T  Heinemeyer J  Franz P  Behrens P F  Jackisch R  Landwehrmeyer G B  Feuerstein T J
Institution:Section of Clinicial Neuropharmacology, Neurozentrum, Breisacherstrasse 64, D-79106 Freiburg, Germany. janvetter@gmx.de
Abstract:In Huntington's disease (HD), neuronal loss is most prominent in the striatum leading to emotional, cognitive and progressive motor dysfunction. The R6/2 mice, transgenic for exon 1 of the HD gene, develop a neurological phenotype with similarities to these features of HD. In striatal tissue, electrically evoked release of tritiated acetylcholine (ACh) and dopamine (DA) were compared in wild-type (WT) and R6/2 mice. In R6/2 mice, the evoked release of ACh, its M2 autoreceptor-mediated maximum inhibition and its dopamine D2 heteroreceptor-mediated maximum inhibition was diminished to 51%, 74% and 87% of controls, respectively. Also, the activities of choline acetyltransferase and of synaptosomal high-affinity choline uptake decreased progressively with age in these mice. In the DA release model, however, electrical stimulation elicited equal amounts of 3H]-DA both in WT and R6/2 mice. Moreover, high-affinity DA uptake into striatal slices was similar in WT and R6/2 mice. In order to confirm these findings in vivo, intrastriatal levels of extracellular DA were measured by intracerebral microdialysis in freely moving mice: striatal DA levels were found to be equal in WT and R6/2 mice. In conclusion, in the transgenic R6/2 mice changes occur mainly in striatal cholinergic neurones and their pre-synaptic modulation, but not in the dopaminergic afferent terminals. Whether similar events also contribute to the pathogenesis of HD in humans has to be established.
Keywords:acetylcholine  dopamine  Huntington's disease  microdialysis  striatum  transgenic mice
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号