首页 | 本学科首页   官方微博 | 高级检索  
   检索      


FGF21 Promotes Endothelial Cell Angiogenesis through a Dynamin-2 and Rab5 Dependent Pathway
Authors:Usman Yaqoob  Kumaravelu Jagavelu  Uday Shergill  Thiago de Assuncao  Sheng Cao  Vijay H Shah
Institution:Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota, United States of America.; Ohio State University, United States of America,
Abstract:Binding of angiogenic molecules with cognate receptor tyrosine kinases (RTK) is required for angiogenesis however the precise link between RTK binding, endocytosis, and signaling requires further investigation. Here, we use FGFR1 as a model to test the effects of the large GTPase and endocytosis regulatory molecule dynamin-2 on angiogenic signaling in context of distinct FGF ligands. In vitro, overexpression of dominant negative dynamin-2 (DynK44A) attenuates FGFR1 activation of Erk and tubulogenesis by FGF2. Furthermore, we identify FGF21, a non-classical, FGF ligand implicated in diverse human pathologies as an angiogenic molecule acting through FGFR1 and β-Klotho coreceptor. Disruption of FGFR1 activation of ERK by FGF21 is achieved by perturbation of the function of both dynamin-2 and Rab5 GTPase. In vivo, mice harboring endothelial selective overexpression of DynK44A, show impaired angiogenesis in response to FGF21. In conclusion, dynamin dependent endocytosis of FGFR1 is required for in vitro and in vivo angiogenesis in response to FGF2 and the non-classical FGF ligand, FGF21. These studies extend our understanding of the relationships between RTK binding, internalization, endosomal targeting, and angiogenic signaling.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号