首页 | 本学科首页   官方微博 | 高级检索  
   检索      

Glycine origin of the methyl substituent on C7′-N of octodiose for the biosynthesis of apramycin
摘    要:Apramycin is unique in the aminoglycoside family due to its octodiose moiety. However, either the biosynthesis process or the precursors involved are largely unknown. Addition of glycine, as well as serine or threonine, to the Streptomyces tenebrabrius UD2 fermentation medium substantially increases the production of apramycin with little effect on the growth of mycelia, indicat-ing that glycine and/or serine might be involved in the biosynthesis of apramycin. The 13C-NMR analysis of 2-13C] glycine-fed (25% enrichment) apramycin showed that glycine specifically and efficiently incorporated into the only N-CH3 substituent of apramycin on the C7′ of the octodiose moiety. We noticed that the in vivo concentration of S-adenosyl methionine increased in parallel with the addition of glycine, while the addition of methione in the fermentation medium significantly decreased the productivity of apramycin. Therefore, the methyl donor function of glycine is proposed to be involved in the methionine cycle but methionine itself was proposed to inhibit the methylation and methyl transfer processes as previously reported for the case of rapamycin. The 15N NMR spectra of 2-13C,15N]serine labeled apramycin indicated that serine may also act as a limiting precursor contributing to the ―NH2 substituents of apramycin.

收稿时间:7 August 2005
修稿时间:13 September 2005
本文献已被 万方数据 SpringerLink 等数据库收录!
点击此处可从《中国科学:生命科学英文版》浏览原始摘要信息
点击此处可从《中国科学:生命科学英文版》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号