首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Aspects of production and biomass of four seagrass species (Cymodoceoideae) from Papua New Guinea
Institution:1. Western Ecology Division, US – EPA, 2111 SE Marine Science Dr., Newport, OR, USA;2. National Center for Ecological Analysis and Synthesis, 735 State St., Santa Barbara, CA, USA
Abstract:Biomass and production data of the seagrasses Cymodocea serrulata (R. Brown) Aschers. and Magnus, Cymodocea rotundata Ehrenb. et Hempr. ex Aschers., Halodule uninervis (Forssk.) Aschers. and Syringodium iksoetifolium (aschers.) Dandy were collectede in monospecific stands in Bootless Inlet, Papua New Guinea. Cymodocea serrulata and Cymodocea rotundata were studied from November 1980 to November 1981. Total annual mean biomass was 354 and 201 g ADW m?2, respectively. The largest proportion of these biomass values was contributed by the rhizomes (49 and 36%, respectively) and leaf biomass was ± 30% for both species. Halodule uninervis was studied at an intertidal and a subtidal site. The highest total annual mean biomass (600 g ADW m?2) was recorded at the intertidal site, of which 85% was found below ground. The largest proportion of the biomass, at both sites, was contributed by the below-ground vertical axes of the shoots. The biomass of the rhizomes was relatively low (9–12%) for Halodule uninervis. Proportionally, the largest above-ground biomass (40%) was recorded for Syringodium isoetifolium, of which the annual mean biomass was 481 g ADW m?2.Total production (above and below ground) was 4.9 and 3.0 g ADW m?2 day?1 for Cymodocea serrulata and Cymodocea rotundata, respectively. Approximately 70% was production of leaves. Total production amounted to 6.0 and 4.0 g ADW m?2 day?1 for Halodule uninervis at the intertidal and subtidal sites, respectively. The maximum production was recorded for Syringodium isoetifolium, 60% of the 9.0 g ADW m?2 day?1 was contributed by the leaves. All species reached the maximum production during February and March, when the water temperatures were highest and water was retained above all sites, at all times. The increase of leaf production was mainly due to the increase in biomass of the mature leaves. Significant changes in the plastochrone interval of the leaves were not observed during this period.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号