首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Relative abundance of different cadherins defines differentiation of mesenchymal precursors into osteogenic, myogenic, or adipogenic pathways
Authors:Shin C S  Lecanda F  Sheikh S  Weitzmann L  Cheng S L  Civitelli R
Institution:Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, Missouri 63110, USA.
Abstract:Cadherins, a family of cell-cell adhesion molecules, provide recognition signals that are important for cell sorting and aggregation during tissue development. This study was performed to determine whether distinct cadherin repertoires define tissue-specific lineages during differentiation of immature C3H10T1/2 and C2C12 mesenchymal cells. Both cell lines expressed mRNA for N-cadherin (N-cad), cadherin-11 (C11), and R-cadherin (R-cad). After induction of osteogenesis by recombinant human BMP-2 (rhBMP-2) treatment, steady state N-cad mRNA slightly increased in C3H10T1/2 cells. Likewise, the abundance of C11 mRNA increased in both cell lines, although the changes were more remarkable in C2C12 cells. By contrast, R-cad expression was almost shut off by rhBMP-2. The immature but committed osteoblastic MC3T3-E1 cells exhibited only minor changes in N-cad and C11 mRNA abundance after rhBMP-2 treatment. Whereas adipogenic differentiation was associated with a net decrease of N-cad and C11 expression in C3H10T1/2 cells, induction of myogenesis in C2C12 cells resulted in up-regulation of N-cad, while R-cad mRNA became undetectable in either case. Similarly, the adipocytic 3T3-L1 cells expressed very low levels of all cadherins when fully differentiated. Therefore, the repertoire of cadherins present in undifferentiated mesenchymal cells undergoes distinct changes during transition to mature cell phenotypes. Although neither N-cad nor C11 represent strict tissue-specific markers, the relative abundance of these mesenchymal cadherins defines lineage-specific signatures, perhaps providing recognition signals for aggregation and differentiation of committed precursors.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号