首页 | 本学科首页   官方微博 | 高级检索  
     


A role for mammalian target of rapamycin in regulating T cell activation versus anergy
Authors:Zheng Yan  Collins Samuel L  Lutz Michael A  Allen Amy N  Kole Thomas P  Zarek Paul E  Powell Jonathan D
Affiliation:The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University Medical Institutions, Baltimore, MD 21231, USA.
Abstract:Whether TCR engagement leads to activation or tolerance is determined by the concomitant delivery of multiple accessory signals, cytokines, and environmental cues. In this study, we demonstrate that the mammalian target of rapamycin (mTOR) integrates these signals and determines the outcome of TCR engagement with regard to activation or anergy. In vitro, Ag recognition in the setting of mTOR activation leads to full immune responses, whereas recognition in the setting of mTOR inhibition results in anergy. Full T cell activation is associated with an increase in the phosphorylation of the downstream mTOR target S6 kinase 1 at Thr(421)/Ser(424) and an increase in the mTOR-dependent cell surface expression of transferrin receptor (CD71). Alternatively, the induction of anergy results in markedly less S6 kinase 1 Thr(421)/Ser(424) phosphorylation and CD71 surface expression. Likewise, the reversal of anergy is associated not with proliferation, but rather the specific activation of mTOR. Importantly, T cells engineered to express a rapamycin-resistant mTOR construct are resistant to anergy induction caused by rapamycin. In vivo, mTOR inhibition promotes T cell anergy under conditions that would normally induce priming. Furthermore, by examining CD71 surface expression, we are able to distinguish and differentially isolate anergic and activated T cells in vivo. Overall, our data suggest that by integrating environmental cues, mTOR plays a central role in determining the outcome of Ag recognition.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号