1. Biochemistry Department, University of Dundee, Dundee DD1 4HN, Scotland;1. National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20014, U.S.A.
Abstract:
Although it has been believed for several years that calcium ions are the means by which glycogenolysis and muscle contraction are synchronized, it is only over the past three years that this concept has started to be placed on a firm molecular basis. It appears that the regulation of phosphorylase kinase is achieved through the interaction of the enzyme with the two calcium binding proteins, calmodulin and troponin-C, and that the relative importance of these proteins depends on the degree of phosphorylation of the enzyme (figure 3). In the dephosphorylated form of the enzyme, troponin-C rather than calmodulin is the dominant calcium dependent regulator providing an attractive mechanism for coupling glycogenolysis and muscle contraction, since the same calcium binding protein activates both processes. On the other hand, the phosphorylated form of the enzyme can hardly be activated at all by troponin-C, although it is still completely dependent on calcium ions. Calmodulin (the δ - subunit) is therefore the dominant calcium dependent regulator of phosphorylase kinase in its hormonally activated state.